
Journal of Global Optimization14: 251–266, 1999.
© 1999Kluwer Academic Publishers. Printed in the Netherlands.

251

Augmented Lagrangian and Tchebycheff
Approaches in Multiple Objective Programming

JØRGEN TIND1 and MARGARET M. WIECEK2?

Department of Operations Research, Institute for Mathematical Sciences, University of
Copenhagen, Universitetsparken 5, DK-2100 Copenhagen O, Denmark (e-mail: tind@math.ku.dk)
2Department of Mathematical Sciences, Clemson University, Martin Hall, Clemson, SC 29634,
USA (e-mail: wmalgor@clemson.edu)

(Received 30 January 1997; accepted in revised form 15 July 1998)

Abstract. Relationships between the Tchebycheff scalarization and the augmented Lagrange mul-
tiplier technique are examined in the framework of general multiple objective programs (MOPs). It
is shown that under certain conditions the Tchebycheff method can be represented as a quadratic
weighted-sums scalarization of the MOP, that is, given weight values in the former, the coefficients
of the latter can be found so that the same efficient point is selected. Analysis for concave and linear
MOPs is included. Resulting applications in multiple criteria decision making are also discussed.
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1. Introduction

A variety of scalarization methods for finding efficient solutions of multiple ob-
jective programs (MOPs) have been developed over the last two decades. Some of
the methods were designed specifically for linear problems and others work well
only on problems with concave objective functions and a convex feasible region.
One of a few methods that can generate efficient solutions of general MOPs is the
Tchebycheff scalarization that selects an efficient solution based on the minimiza-
tion of the Tchebycheff distance of the objective functions from an ideal point.
Among the first who proposed to apply the Tchebycheff norm to MOPs in the
early seventies were Bowman [4], Yu [24] and Zeleny [25]. In the eighties, that
direction of research was explored by Choo and Atkins [5], Ecker and Shoemaker
[6], Kaliszewski [10], Wierzbicki [23], and many others. In particular, Steuer and
Choo [18] showed that by means of the lexicographic weighted Tchebycheff pro-
gram every efficient solution of the nonconcave MOP is uniquely computable and
all objective function values returned by this program are nondominated.
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Research, University of Copenhagen, Copenhagen, Denmark. This research was partially supported
by ONR Grant N00014-97-1–784.



252 J. TIND AND M. M. WIECEK

In parallel, the theory of generalized Lagrangian duality in single objective
mathematical programming has been developed as a means for resolving a du-
ality gap that may exist for nonconcave problems. Everett [7] was perhaps the
first to propose a generalized Lagrange multiplier method. Specific generalized
Lagrangian functions were introduced by Roode [15]. Gould [9] proposed a multi-
plier function and Nakayama et al. [13] continued in that direction by adding to the
requirements of the multiplier function. When the generalized Lagrangian function
is of a quadratic form, then it is referred to as augmented. Various methods utilizing
augmented Lagrange multiplier techniques have also been developed. Theoretical
foundations for the development of augmented Lagrange multiplier techniques
were given by Rockafellar [14] who thoroughly analyzed the augmented Lagrange
function and obtained global saddle point conditions for general nonconcave math-
ematical programs. Tind and Wolsey [22] surveyed various results of generalized
duality and gave a unifying framework for handling both nonlinear and integer
problems. Minoux [11] gave a comprehensive summary of the generalized duality
theory.

As the generalized Lagrangian duality theory plays a major role for the analysis
and solution of general constrained single objective nonlinear programs, it also
turned out to be helpful in generating efficient solutions of nonconcave MOPs. Ten-
Huisen and Wiecek proposed a framework for developing generalized-Lagrangian-
type scalarizing functions for nonconcave MOPs [19]. They used augmented-
Lagrangian-type scalarizing functions to generate nondominated solutions of
bicriteria programs [20] and multiple criteria programs [21]. A vector-valued
generalized Lagrangian was recently constructed and analyzed by Singh et al. [16].

The purpose of this article is to examine relationships between the Tchebycheff
method and the augmented Lagrange multiplier technique. We show that under
certain conditions the Tchebycheff scalarization can be represented as a quadratic
program, formulated in the objective space of the original MOP, whose coefficients
come from the dual augmented Lagrangian problem of the Tchebycheff problem.
In particular, for given weight values in the Tchebycheff method we give a direct
calculation of the multipliers in the quadratic program leading to the selection of
the same efficient solution. We also show that when applied in multiple criteria
decision making, the Tchebycheff method can be complemented with the quadratic
program so that additional utility information is available to the decision maker.

In Section 2 we derive the quadratic program for the general nonconcave MOP.
A detailed analysis of the bicriteria case is included in Section 3. Section 4 contains
a similar development for concave as well as linear MOPs, where the Tchebycheff
scalarization is related to the well known weighted-sums approach (see Geoffrion
[8]) by means of the classical Lagrangian duality. Implications in multiple crite-
ria decision making are discussed in Section 5 and conclusions are contained in
Section 6.
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2. The nonconcave case

In this section we shall consider mathematical programs with general noncon-
cave objective functions and constraint functions. We first formulate the general
problem, review the Tchebycheff scalarization and then introduce the dual aug-
mented Lagrangian problem. Under suitable conditions, the dual problem leads to
a quadratic program that is, in fact, a quadratic weighted-sums scalarization of the
original MOP. We analyze the relationship between the two scalarizations as far as
their coefficients and the efficient solutions generated by them.

First some notation. Letx ∈ Rn and introduce the objective functionsfi(x) :
Rn → R for i = 1, . . . , m and the constraint functionshj : Rn → R, where
j = 1, . . . , p. Let

f (x) = [f1(x), . . . , fm(x)]T

and

h(x) = [h1(x), . . . , hp(x)]T .
The setX of feasible solutions is thus given by

X = {x ∈ Rn | hj(x) = 0 for j = 1, . . . , p}.
If the original problem includes an inequality feasibility constrainth̄i(x) ≤ 0, then
this constraint can be easily converted to an equalityhi(x) = h̄i(x) + s2

i = 0,
wheresi ∈ R is an unconstrained slack variable.

Consider the general multiple objective program (MOP) of the form:

max f (x)

s.t. x ∈ X. (1)

A point x0 ∈ X is called an efficient solution of MOP if there is no other point
x ∈ X such thatfi(x) ≥ fi(x0) for i = 1, . . . , m with strict inequality holding for
at least one component. The imagef (x0) of an efficient solutionx0 in the objective
space is called a nondominated solution.

We shall treat (1) by the Tchebycheff approach in order to find its efficient
solutions. So, introduce weightsλi ∈ R for i = 1, . . . , m and letz∗i for i =
1, . . . , m be the elements of an ideal, i.e.

z∗i = {max
x∈X

fi(x)+ εi | εi ≥ 0}. (2)

It is sufficient to requireεi > 0, but most cases allowεi = 0, see Steuer [17]. Now
consider the problem

min
x∈X max

1≤i≤m
{λi(z∗i − fi(x))}, (3)

whereλi ≥ 0 for i = 1, . . . , m and
∑m

i=1 λi = 1.



254 J. TIND AND M. M. WIECEK

Unless multiple criterion vectors solve (3) for a given set of weights (in which
case multiple nondominated solutions of (1) may have been generated), all effi-
cient solutions of (1) can be found as optimal solutions of (3) by changing the
λ-values. However, if the multiple optimal criterion vectors exist, an additional
step may be required to ensure efficiency. This can for example be done by appli-
cation of the lexicographic weighted Tchebycheff approach, see Steuer [17], which
lexicographically solves the problem

min [α,
m∑
i

(z∗i − fi(x))]

s.t. −λi(z∗i − fi(x)) ≤ α, i = 1, . . . , m, (4)

x ∈ X
and yields efficient solutions.

Program (3) may be written in an alternative form as

min
α,x

α

s.t. −λifi(x)− α + λiz∗i ≤ 0, i = 1, . . . , m, (5)

x ∈ X,
whereα ∈ R. We assume that program (5) has an optimal solution for everyλi ≥ 0
for i = 1, . . . , m. Observe thatα will never be negative and at least one of the
inequality constraints of this program will be binding at optimality.

Assume now thatλi > 0 for i = 1, . . . , m and let(x̄, ᾱ) denote an optimal
solution of program (5) so that all the inequality constraints are binding at(x̄, ᾱ).
The corresponding nondominated pointf (x̄) has componentsz∗i − (ᾱ)

(λi)
for i =

1, . . . , m. To facilitate notation we introduce

gi(x, α) = −λifi(x)− α + λiz∗i for i = 1, . . . , m

and

g(x, α) = [g1(x, α), . . . , gm(x, α)]T .
Hence, we restrict all the inequalities to equalities and consider the following

primal problem:

min α

s.t. g(x, α) = 0 (6)

x ∈ X.
We shall treat this problem by the augmented Lagrange multiplier approach. So, let
us introduce dual variables(a, y), wherea ∈ R, a > 0 and y∈ Rm. LetA be the
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m × m diagonal matrix with diagonal elements all equal toa. We can now define
the augmented Lagrange function:

LQ(x, α, a, y) = α + g(x, α)T Ag(x, α)+ yT g(x, α). (7)

and the following dual program:

max
a>0,y

min
x∈X,α

LQ(x, α, a, y). (8)

Following Rockafellar [14], we can state the following duality result. Subject
to the conditions discussed below, program (6) has an optimal solution(x, α) if
and only if its dual (8) has an optimal solution(a, y), and in this case the objective
values of both programs are equal. In fact,LQ(x, α, a, y) has a saddle point in the
primal variables(x, α) and the dual variables(a, y). This implies that an optimal
solution(x, α) of (6) can be found as an optimal solution of the inner problem of
(8) keeping the dual solution(a, y) fixed at the optimal values.

The conditions require that the primal problem, that is program (6), satisfy the
quadratic growth condition and be stable of degree 2. The former requires that
the dual problem, that is program (8), be feasible, i.e. there exists(a, y), a > 0
such that minx∈X,α LQ(x, α, a, y) > −∞. With the former satisfied, the latter
is necessary and sufficient for the strong duality to hold between the primal and
the dual problem. In particular, stability of degree 2 is achieved when the primal
problem satisfies the quadratic growth condition and the second order sufficiency
conditions (see Bazaraa et al. [3]) withy as a vector of multipliers (of the classical
Lagrangian) hold at a unique optimal solution(x, α) of the primal problem in the
strong sense.

We now present our main result relating an optimal solution of the primal
problem to an optimal solution of a certain quadratic program.

THEOREM 1. Let primal problem(6) satisfy the quadratic growth condition and
be stable of degree 2.(x̄, ᾱ) is an optimal solution of(6) if and only if x̄ is an
optimal solution of the quadratic program

max
x∈X

f (x)TQf (x)+ pT f (x), (9)

whereQ is a symmetricm×mmatrix andp ∈ Rm.
Proof.Let (ā, ȳ) denote an optimal solution of (8). We shall show thatα can be

eliminated from (8) and that we can obtain an optimal solution of (6) by solving
(9). The equality constraints of primal problem determine the value ofα as

α = 1

m

m∑
i=1

λi(z
∗
i − fi(x)). (10)

As a > 0,LQ(x, α, ā, ȳ) is strictly convex with respect toα. So for fixedx, ā,
and ȳ, minimization of (8) with respect toα can be done through differentiation.
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Hence we calculate

∂LQ(x, α, ā, ȳ)

∂α
= 1+

m∑
i=1

(−2āλiz
∗
i − ȳi + 2āα + 2āλifi(x)) = 0. (11)

The optimal valueα(x) of α as a function ofx is then

α(x) = 1

m

m∑
i=1

λi(z
∗
i − fi(x))+

1

2ām

(
m∑
i=1

ȳi − 1

)
. (12)

Expressions (10) and (12) imply that

m∑
i=1

ȳi = 1. (13)

By insertion of the appropriate terms the augmented Lagrangian (7) undertakes
the following form for fixedā andȳ:

LQ(x, α, ā, ȳ) = α + ā
m∑
i=1

[λ2
i (fi(x))

2− 2λ2
i z
∗
i fi(x)+ α2− 2λiz

∗
i α

+ 2λifi(x)α + λ2
i (z
∗
i )

2] +
m∑
i=1

ȳi (−λifi(x)− α + λiz∗i )

= āmα2+ (1−
m∑
i=1

ȳi )α − 2āα
m∑
i=1

λi(z
∗
i − fi(x))

+
m∑
i=1

[āλ2
i (fi(x))

2 − (2āλiz∗i + ȳi )λifi(x)+ λiz∗i (āλiz∗i + ȳi )].
(14)

Observe that the second term of (14) vanishes due to (13) whereas, using (10),
the third term is equal to−2āmα2. This gives us

LQ(x, α, ā, ȳ) =− āmα2+
m∑
i=1

[ā(λifi(x))2+ (−2āλiz
∗
i − ȳi )λifi(x)

+ ā(λiz∗i )2+ λiz∗i ȳi]. (15)

Using (10) again, we calculate

−āmα2 = − ā
m
(λT f (x))2+ 2ā

m
λT z∗λT f (x)− ā

m
(λT z∗)2. (16)

Let3 be anm × m symmetric matrix whose(i, j)-entry is given by(ā)
(m)
λiλj )

for i = 1, . . . , m andj = 1, . . . , m, and3̄ be anm × m diagonal matrix with
diagonal elements̄aλ2

1, . . . , āλ
2
m.
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We obtain

ā

m∑
i=1

(λifi(x))
2 = f (x)T 3̄f (x) (17)

and
ā

m
(λT f (x))2 = f (x)T 3f (x). (18)

Let τ be anm vector with elements

τi = (2āλiz∗i + ȳi )λi for i = 1, . . . , m. (19)

We apply (16), (17), (18) to (15) and get

LQ(x, α, ā, ȳ) =− f (x)T (3− 3̄)f (x)− (τ T − 2

m
āλT z∗λT )f (x)

− (z∗)T (3− 3̄)z∗ +
m∑
i=1

λiȳiz
∗
i . (20)

We now define a matrixQ and a vectorp as

Q = 3− 3̄, (21)

and

p = τ − 23T z∗. (22)

The second term in the right hand side of (20) is equal to

(τ T − 2(z∗)T3)f (x),

which is exactlypT f (x). DefiningQ as above, expression (20) becomes

LQ(x, α, ā, ȳ) = −f (x)TQf (x)− pT f (x)− (z∗)TQz∗ +
m∑
i=1

λiȳiz
∗.

The last two terms are constant and we are left with the first two terms to be
minimized with respect tox. By changing sign in the objective we get the requested
form (9). 2

Our analysis until now refers to the case where all weights are positive and,
at optimality, all the inequality constraints of (5) are binding. Ifλk = 0 for some
k ∈ {1, . . . , m} then the corresponding inequality constraint of program (5) (and
also the equality constraint of program (6)) is trivially satisfied and the criterion
fk(x) does not contribute to determining the optimal value ofα. Similarly, if λk = 0
in program (9), thek-th row and thek-th column of matrixQ become zero vectors
and thek-th component of vectorp is also zero.

We now consider the more general case when not all of the inequality con-
straints of program(5) are binding at the nondominated point found.
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THEOREM 2. Let the primal problem(5) related to the original MOP satisfy the
quadratic growth condition and be stable of degree2. Let x̄ be an efficient point
of the MOP generated by the Tchebycheff scalarization with some ideal pointz∗
and some weightsλi > 0 for i = 1, . . . , m. The same efficient point is an optimal
solution of the quadratic weighted-sums scalarization(9), whereQ is a symmetric
m̄× m̄ matrix,p ∈ Rm̄, andm̄ is the number of the binding inequality constraints
in program(5) at this efficient point.

Proof. If not all the inequality constraints of program (5) are binding atx̄,
then the criterion functions corresponding to the non-binding constraints contribute
neither to determining this nondominated point nor to the trade-offs between the
remaining criteria. We can drop these non-binding constraints and then formulate
the quadratic program whose matrixQ and vectorp will be respectively reduced.2

To complement the discussion above, we point out that if not all of the inequality
constraints are binding atx̄, we can also proceed differently than it is indicated in
Theorem 2. We can find another set of weights for which these previously non-
binding constraints will become binding and for these new weights derive the
quadratic program of full size. For the discussion on the choice of appropriate
weights see Steuer [17]. Another option is to derive the quadratic problem for a
primal problem involving equality as well as inequality constraints. We would then
have to use another form of the augmented Lagrangian function (see Rockafellar
[14]) specially designed for inequality constraint problems. In fact, the former
technique is more beneficial than the latter since all the criterion functions achieve
their representation in the quadratic program.

The condition of stability of degree 2 required for the primal problem becomes
significant when the two scalarizations are compared from the point of view of
their effectiveness in reaching every nondominated point. As stated earlier in this
section, all nondominated solutions of the original MOP can be found by means of
the weighted Tchebycheff scalarization or its lexicographic version independently
of the curvature of the nondominated frontier. The weighted Tchebycheff scalar-
ization can find this nondominated solution even if it is located at a point where the
nondominated frontier is not differentiable and even if additionally this solution
is improperly nondominated (in the sense of Geoffrion, see [8]). However, if this
scalarization generates a nondominated point in the neighborhood of which the
curvature of the nondominated frontier does not allow to support the frontier by any
quadratic function, then the corresponding quadratic weighted-sums scalarization
cannot be constructed. In this case, in fact, the condition of stability of degree 2
does not hold. However, this situation arises only in exceptional cases.
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3. The bicriteria case

We now focus our attention on the bicriteria case and analyze its quadratic weighted-
sums scalarization (9) in order to better examine the structure of the related quadratic
function and its relationship with the Tchebycheff scalarization. Let

q(f ) = f TQf + pT f, (23)

where

f = (f1, f2)
T ,

Q = 1

2
ā

( −λ2
1 λ1λ2

λ1λ2 −λ2
2

)
,

p =
(
āλ2

1z
∗
1 − āλ1λ2z

∗
2 + λ1ȳ1

āλ2
2z
∗
2 − āλ1λ2z

∗
1 + λ2ȳ2

)
.

Assume again that the nondominated pointf̄ = f (x̄) generated by the Tcheby-
cheff approach for some ideal pointz∗ and some weightsλ1 andλ2 makes all the
inequality constraints of (5) binding. Then the ideal point and the nondominated
point determine the line whose equation is

f2 = λ1

λ2
f1+ z∗2 −

λ1

λ2
z∗1. (24)

In order to transform matrixQ into a diagonal form we find its eigenvalues

ρ1 = 0,

ρ2 = −1

2
ā(λ2

1+ λ2
2),

and the corresponding (normalized) eigenvectors

e1 = 1√
λ2

1+ λ2
2

(
λ2

λ1

)
,

e2 = 1√
λ2

1+ λ2
2

(
λ1

−λ2

)
.

Let E = (e1, e2) be the matrix of eigenvectors andr = (r1, r2)
T be a new

variable so that

f = Er. (25)
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Then functionq(f ) can now be represented as

q(f ) = q(Er) = rT Kr + pTEr, (26)

whereK = ETQE is the diagonal matrix with the diagonal elements

k1 = 0,

k2 = −1

2
ā(λ2

1+ λ2
2).

Multiplying the terms in (26) and letting

t1 = (p1λ1− p2λ2)
2

4k2λ1λ2

√
λ2

1+ λ2
2

and

t2 = − p1λ1− p2λ2

2k2

√
λ2

1+ λ2
2

,

we getq(f ) transformed to a functioñq(r) of the form

q̃(r) = k2(r2− t2)2+ λ1λ2√
λ2

1+ λ2
2

(r1− t1), (27)

which represents the original function (23) in the new system of coordinates(r1, r2)

obtained by rotating the original system(f1, f2). Defining a new variables =
(s1, s2)

T , where

s1 = r1− t1
s2 = r2− t2, (28)

we eventually obtain a function̄q(s) given by

q̄(s) = k2s
2
2 +

λ1λ2√
λ2

1+ λ2
2

s1. (29)

Equation (29) represents the original function (23) in the new system of coordi-
nates(s1, s2) obtained by rotating and translating the original system(f1, f2). The
rotation angleγ is such that

tanγ = λ1

λ2
(30)
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and the translation vector is given by(t1, t2)T . We observe that the weights are
solely responsible for the rotation whose angle agrees with the slope of line (24)
while a combination of the weights, the ideal point coordinates and the optimal
values of the dual variables determine the translation. Furthermore, thes1-axis
considered in the original system(f1, f2) coincides with line (24).

We now calculatef2(s1), thef2-intercept of thes1-axis. From (25) and (28) we
obtainE(s + t) = f , which forf = (0, f2(s1)) yields

E

(
s1+ t1
s2+ t2

)
=
(

0
f2(s1)

)
. (31)

Takings2 = 0, from (31) we obtain

f2(s1) = z∗2 −
λ1

λ2
z∗1 +

−λ2
1ȳ1 + λ2

2ȳ2

āλ2(λ
2
1+ λ2

2)
. (32)

As this intercept is equal to the intercept of (24), we haveλ2
1ȳ1 − λ2

2ȳ2 = 0 or

λ2
i ȳi = const, i = 1,2. (33)

Using (13) we find the optimal values of the dual variables

(ȳ1, ȳ2) =
(

λ2
2

λ2
1+ λ2

2

,
λ2

1

λ2
1+ λ2

2

)
. (34)

4. The concave case

In this section we return to the multiple objective case and additionally assume
that all the objective functions are concave, the feasible set is convex, and that an
appropriate constraint qualification holds so that the strong duality theorem for sin-
gle objective concave nonlinear programs holds (see Bazaraa et al. [3]). Consider
then the concave MOP of form (1), its Tchebycheff scalarization (3), and problem
(5) now referred to as the primal problem to be treated by the Lagrange multiplier
approach. We introduce dual variablesy ∈ Rm , y ≥ 0, and define the Lagrange
function:

L(x, α, y) = α + yT g(x, α), (35)

and the following dual program:

max
y≥0

min
x∈X,α L(x, α, y). (36)

THEOREM 3. Let the criterion functionsfi for i = 1, . . . , m be concave and
the feasible setX be convex. Let the primal problem(5) satisfy a constraint qual-
ification so that the strong duality theorem for single objective concave nonlinear



262 J. TIND AND M. M. WIECEK

programs holds. A point̄x is an optimal solution of(5) if and only if it is an optimal
solution of the weighted-sums scalarization of the MOP

max
x∈X

µT f (x), (37)

whereµ ∈ Rm andµ ≥ 0.
Proof.Let ȳ be an optimal solution of (36). For fixedx andȳ, minimization of

(36) with respect toα can again be done through differentiation. Hence from

∂L(x, α, ȳ)

∂α
= 0,

we get
m∑
i=1

ȳi = 1.

Therefore the optimal value of the inner problem in (36) is

min
α
L(x, α, ȳ) = −

m∑
i=1

λiȳifi(x)+
m∑
i=1

λiȳiz
∗
i . (38)

Letting

µi = λiȳi for i = 1, . . . , m, (39)

and

c0 =
m∑
i=1

λiȳiz
∗
i ,

we get

min
α
L(x, α, ȳ) = −µT f (x)+ c0. (40)

and dual problem (36) is equivalent to (37). 2
Note that whenµ > 0, program (37) finds properly efficient solutions (in the

sense of Geoffrion, see [8]). Due to (39), we must have thatλ > 0 andȳ > 0.
The former agrees with Steuer [17, Section 14.9, Step 11] in the case that the ideal
is selected such thatεi > 0 in (2) while the latter implies that all the inequality
constraints of (5) are binding and nondegenerate at this solution.

The concave case implies a similar result for the linear multiple objective pro-
gram (LMOP) of the form:

max Cx

s.t. x ∈ S, (41)

whereC is anm× n matrix andS is a convex polyhedral set inRn.
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THEOREM 4. A point x̄ ∈ S is an optimal solution of the weighted Tchebycheff
scalarization of the LMOP if and only if it is an optimal solution of its weighted
sums scalarization

max
x∈S

µT Cx, (42)

whereµ ∈ Rm andµ ≥ 0.
Proof. The proof uses the strong duality theorem of linear programming (see

Bazaraa et al. [2]) and follows the derivation of the concave case. 2

5. Significance in decision making

For general nonconcave MOPs, the weighted Tchebycheff scalarization (3) and the
quadratic weighted-sum scalarization (9), when considered as a tool for finding
efficient solutions, become related mathematical procedures since they generate
the same solution using appropriate values of their input parameters. This connec-
tion grounded in theory of mathematical programming does not just carry over to
multiple criteria decision making but delivers new information for conducting a
decision making process, which we now discuss.

It can be shown that the matrixQ of program (9) is negative semi-definite
so that this program involves maximization of a concave quadratic function of
the objective functions over the image of the feasible set in the objective space.
As a result, the decision maker’s utility represented by the weighted Tchebycheff
metric achieves a new representation by means of a concave quadratic function.
Due to concavity, the unconstrained maximum value of this quadratic function is
unbounded, which shows that the new utility function offers infinite improvement
of all the objective function values. This implies that moving the ideal point defined
for any nonnegativeεi, i = 1, . . . , m, may also infinitely improve the objective
values. We emphasize that this quadratic utility function should be more attractive
to the decision maker than the function represented by the level curves of the
weighted Tchebycheff metric. In fact, the Tchebycheff metric offers an unreal-
istic utility function with zero or infinite trade-offs where weakly nondominated
solutions and nondominated solutions are considered to be of equal utility to the
decision maker. On the contrary, in the neighborhood of the nondominated point
found, the quadratic function provides the decision maker with finite trade-offs and
assigns equal utility only to nondominated solutions.

As quadratic program (9) is composed of quadratic weighted sums of the ob-
jective functions, it may become computationally complex. On the other hand,
Tchebycheff program (5) is easy to solve. As the two programs generate the same
efficient solution, the latter can work as a tool for finding this solution while the
former can specify a decision maker’s utility function in the neighborhood of this
solution. In this way both programs complement each other and assist a deci-
sion maker in the decision making process. Furthermore, constructing the utility
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function does not require any additional information that is needed to perform the
Tchebycheff scalarization and find a nondominated solution. Therefore, a decision
making process of searching for the most preferred efficient solutions can be car-
ried with the Tchebycheff scalarization and additional utility information can be
concurrently extracted from the related quadratic weighted-sums scalarization.

This interpretation of the quadratic program (9) follows upon the recent devel-
opments on relating utility function optimization and compromise programming
(see Zeleny [25]) of which the weighted Tchebycheff approach is a special case.
It is a very well known fact that in real life it is almost impossible to obtain a
reliable mathematical representation of decision maker’s actual utility. Ballestro
and Romero [1] recognized that compromise programming does not seek to de-
termine this utility but rather seeks to determine a portion of the nondominated set
where the tangency with utility function level curves likely occurs. They considered
bicriteria problems and established a necessary and sufficient condition for a utility
function so that its maximum is in the portion of the nondominated set found by
compromise programming. The condition requires that

∂U(f1,f2)

∂fi

∂U(f1,f2)

∂fj

∣∣∣∣∣∣
f ∗

= λi

λj
, i, j = 1,2, i 6= j, (43)

whereU(f1, f2) is a scalar utility functionU : R2 −→ R andf ∗ = (f ∗1 , f ∗2 ) is the
nondominated point at which this function achieves the maximum. Later, Moron et
al. [12] found general families of functions satisfying this condition.

It can be shown that the quadratic function (23) derived for the bicriteria case
with the optimal values of the dual variables (34) satisfies condition (43) at the
nondominated pointf̄ . Clearly, the utility function given by the weighted-sum of
the criteria (37) also satisfies this condition.

6. Conclusions

In this paper, a Tchebycheff-related dual approach to general nonconcave multiple
objective programs (MOPs) is developed. The approach results from the applica-
tion of the augmented Lagrange multiplier technique to the weighted Tchebycheff
scalarization and involves optimization of quadratic weighted-sums of the original
objective functions. Under suitable conditions, the Tchebycheff method and its
dual approach generate the same efficient solution. The bicriteria case is studied
in more detail and it is shown the weights uniquely determine the optimal values
of the dual variables associated with the linear term of the augmented Lagrangian.
The analysis includes concave and linear MOPs as a special case for which the
optimal values of the dual variables are also derived.

The duality relationships revealed in this paper should become significant in
multiple criteria decision making where the decision maker’s utility represented by
the weighted Tchebycheff metric can now be substituted by a concave quadratic
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function. Although the importance of the new function has been discussed, the
role of the dual variables of the augmented Lagrange function in the decision
making process should be still investigated from the point of view of providing
the decision maker with more information on how to choose the most preferred
efficient solution.
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